Иван Лавренов. Сверхскоростные пульсары улетают из остатков сверхновых на нейтринных ракетах

Предисловие Н. Скрипкина. Некоторые пульсары покидают остатки сверхновых со скоростями более тысячи километров в секунду. Согласно новому исследованию, такую скорость им может придавать весьма необычное явление - мощное направленное нейтринное циклотронное излучение. На первый взгляд это просто триумф современной астрофизики, но в действительности прекрасно иллюстрирует её кризис, в который она буквально рухнула после шквала новых фактов, полученных в результате наблюдения за Вселенной при помощи новых инструментов космического базирования. Будем надеется, что этот кризис будет успешно преодолён.
Сверхскоростные пульсары улетают из остатков сверхновых на нейтринных ракетах

Фотография ударной волны, образованной сверхскоростным пульсаром  PSR 2224+65. / © Palomar Observatory

Массивные звезды заканчивают свой жизненный цикл во вспышках сверхновых. Когда процесс термоядерного синтеза в их недрах доходит до железа, дальнейшее слияние ядер перестает выделять тепловую энергию и поддерживать давление внутри звезды, которое удерживает ее от гравитационного коллапса.

Железное ядро размером с Землю и массой больше, чем солнечная, за доли секунды «схлопывается» в сотни раз, превращаясь в нейтронную звезду. Колоссальная энергия, выделяющаяся при коллапсе, приводит к взрыву, который рассеивает оболочку звезды — это мы и наблюдаем как вспышку сверхновой.

Сферическую симметрию коллапса нарушают колебания звездного ядра, турбулентные потоки и магнитные поля, присутствующие в ядре звезды перед вспышкой. Из-за асимметрии сил, действующих на коллапсирующее ядро, пульсар может получить «пинок» (pulsar kick) со скоростью 200 — 500 километров в секунду и вылететь из центра туманности, оставшейся после сверхновой.

Ученые предложили несколько возможных механизмов этого выброса, но все они не объясняют наличия «сверхскоростных» пульсаров с еще большими скоростями отдачи — до полутора тысяч километров в секунду. Эта скорость, составляющая примерно 1/200 от скорости света, в несколько раз превосходит галактическую вторую космическую скорость (550 км/с для Млечного Пути). Таким образом, вспышка сверхновой способна выбросить пульсар прочь из галактики.

Сверхскоростные пульсары улетают из остатков сверхновых на нейтринных ракетах

Ударная волна от пульсара PSR 2224+65, летящего сквозь межзвездную среду на скорости около полутора тысяч километров в секунду / © https://www.researchgate.net/publication/318785455_Wind_accretion_onto_compact_objects

Астрономы во главе с Ли Чжэном (Li Zheng) из Синьдзянской астрономической обсерватории (Xinjiang Astronomical Observatory) изучили различные процессы в недрах нейтронных звезд и нашли среди них новый возможный механизм образования сверхскоростных пульсаров.

Этот механизм довольно сложен, но мы попробуем объяснить его через более знакомые читателям явления. Он основан на испускании нейтронами направленного циклотронного нейтринного излучения. Знакомые с физикой удивятся: разве циклотронное излучение испускают не только заряженные частицы, двигающиеся в магнитном поле? Здесь мы напомним, что такое классическое циклотронное излучение.

Заряженная частица, движущаяся поперек линий магнитного поля, отклоняется силой Лоренца. Эта сила всегда перпендикулярна направлению движения частицы и заставляет ее непрерывно сворачивать в сторону, двигаясь по спирали, «навитой» на линии магнитного поля. Как и всякий заряд, двигающийся с ускорением, частица при этом испускает электромагнитные волны с частотой, равной периоду обращения вокруг линии поля.

Сверхскоростные пульсары улетают из остатков сверхновых на нейтринных ракетах

Движение электрона в магнитном поле и испускание им электромагнитного излучения. Синими каплевидными фигурами показаны направления испускания излучения, по касательной к траектории электрона. Синхротронное излучение – частный случай циклотронного при околосветовой скорости электрона; пучки испускаемого излучения при этом сужаются. / © wikipedia.org

Нейтринное циклотронное излучение — очень далекий родственник классического. Согласно теории электрослабого взаимодействия, объединяющей электромагнетизм и слабое взаимодействие, нейтроны, движущиеся по кругу, могут испускать пары нейтрино и антинейтрино – легчайших и почти неуловимых элементарных частиц. Слабое взаимодействие ответственно за многие процессы радиоактивного распада и превращения элементарных частиц, и нейтрино часто участвуют в них.

Так же, как и фотоны циклотронного излучения, испускаемые нейтрино уносят угловой момент этого движения. В отличие от фотонов, нейтрино обладают «встроенным» угловым моментом — спином — именно в него и переходит угловой момент нейтронов. И вылетают они не по касательной, как фотоны, а вдоль оси вращения. Нейтроны при этом, помимо снижения скорости вращения, получают еще и импульс отдачи, заставляющий их двигаться вдоль оси вращения. Круговое движение переходит в спираль, похожую на пружину.

Если просто взять нейтрон и заставить его «бежать по кругу», интенсивность этого процесса будет исчезающе малой. Но под невообразимо огромным давлением пульсарных недр нейтроны конденсируются в сверхтекучую жидкость (несмотря на температуру в сотни миллионов градусов). Как целое, эта жидкость вращается вместе с самим пульсаром, делая несколько оборотов в секунду, но вращение сверхтекучей жидкости – более сложный процесс. Оно является наложением друг на друга множества микроскопических квантовых вихрей, подобных тем, которые наблюдаются в сверхтекучем жидком гелии.

Наглядная визуализация образования квантовых вихрей во вращающейся жидкости при ее переходе в сверхтекучее состояние. Решетка вихрей стационарна, но линейная скорость вращения самой жидкости возрастает от центра к краю, аналогично обычной вращающейся жидкости – в каждой точке она является суммой скоростей вращения от каждого из вихрей.

Каждый вихрь представляет собой тончайшую нить «обычной» нейтронной жидкости, вокруг которой вращается сверхтекучая жидкость. Нейтроны в непосредственной близости от нитей делают во много раз больше оборотов в секунду, чем пульсар как целое. А мощность циклотронного нейтринного излучения пропорциональна угловой скорости вращения в восьмой степени.

Таким образом, пребывание нейтронов в состояние сверхтекучести усиливает нейтринное излучение настолько, что отдача от него придает всему пульсару заметный импульс. Новорожденный пульсар постепенно замедляет свое вращение и за счет этого ускоряется пучком нейтрино, как ракетным выхлопом. Приобретенная пульсаром скорость добавляется к скорости его выброса в момент образования (за счет асимметрии коллапса), и итоговая величина может заметно превышать тысячу километров в секунду. Направление движения при этом должно более или менее совпадать с осью вращения пульсара — что и подтвердили астрономы для пульсаров остатка в созвездии Парусов и в Крабовидной туманности.

Ученые отмечают, что механизм «нейтринной ракеты» универсален и всегда приводит к замедлению вращения пульсаров, даже если другие механизмы не активны. Он задает минимальный возможный темп такого замедления, причем медленно вращающиеся пульсары замедляются им сильнее. Это подтверждают наблюдательные данные: медленно вращающихся и медленно замедляющихся пульсаров не обнаружено.

Сверхскоростные пульсары улетают из остатков сверхновых на нейтринных ракетах

Распределение скоростей вращения известных пульсаров (горизонтальная координата) и их замедлений (вертикальная координата). Зеленым показаны миллисекундные пульсары, синим – классические, а красным – магнитары (нейтронные звезды с сильными магнитными полями) / © обсуждаемая статья в The Astrophysical Journal.

Куда же девается угловой момент, если при обычном взгляде кажется, что пульсар замедляет свое вращение и ускоряет линейное движение, не «цепляясь» ни за что?

Он никуда не исчезает, а переходит в угловой момент нейтринного «выхлопа». Нейтрино летят по прямой, но каждое из них несет спин — крошечный угловой момент, квантово-механическим образом присущий самой частице — и у всех нейтрино «выхлопа» они направлены в одну и ту же сторону. Если было бы возможно поглотить этот «выхлоп» каким-либо объектом, то объект-поглотитель раскрутился бы в сторону, противоположную пульсару, в точности на величину, соответствующую потере углового момента самим пульсаром. Но нейтрино проходят сквозь материю почти беспрепятственно, а значит, угловой момент «выхлопа» так и остается путешествовать сквозь Вселенную вместе с ним.

 

Источник

Другие публикации по теме: Маленький пульсар выпускает огромный пучок частиц: ключ к происхождению антиматерии

  • пульсар,ракет,нейтрин,сверхнов,остатк

Leave a reply

Авторизация
*
*
Регистрация
*
*
*
Пароль не введен
*
Генерация пароля